Visually Mapping Cross-Referential Relationships Within Non-Linear Data Sets: Looking at Le Antichità Romane

BRAD TOBER, MDES

KEYWORDS Cross referencing, custom visualization tools, data visualization, hierarchical structures, non-linear data, set/graph theory

DATE 2013–present

URL http://www.bradtober.com/work/skydive/

ABSTRACT This paper presents an information visualization titled Mapping the Colosseo and the Panteon through Le Antichità Romane. The base data set for this visualization, Le Antichità Romane, is a collection of etchings of ancient Rome by printmaker Giovanni Battista Piranesi. As a reference work the nature of this data is very much non-linear, although it features a significant hierarchical categorization. The concept for this visualization initially arose out of a colleague’s desire to track each textual/image reference from both the Colosseo (Colosseum) and the Panteon (Pantheon) throughout the data set. These references cross the hierarchical structure of the data set. The final visualization uses an approach that leverages formal qualities such as value, pattern, directional arrows, and text labels to identify the relationships between the pages of the collection. In addition to an overview of the final visualization, this contribution details the design process that produced it, describing Skydive (a custom prototype/interface proof-of-concept data visualization tool), and formally analyzing the design of the visualization.

CONTEXT

DATA SET

Giovanni Battista Piranesi, born outside of Venice in 1720, was as much an architect as he was a printmaker, and thus it should come as no surprise that one of his most significant works—Le Antichità Romane—focuses on the urban environment of ancient Rome and its constituent structures. Le Antichità Romane, first published in 1756, reflects Piranesi’s archaeological methodology in its compilation of engraved maps, building plans, illustrations, and explanatory indices/annotations. Mapping references Brown University’s first edition digitization of Le Antichità Romane, which consists of 150 high-quality images of the pages of the original work. The following outline provides an overview of the structure of Le Antichità Romane, as is specific to this particular digitization:

1. Non-content (17 images: 1–6, 8, 10, 104, 110, 122, and 125–130)
 A. Includes covers, endpapers, and other blank / interstitial pages
2. Content
 A. Portrait of Piranesi by Polanzani (image 7)
 B. Title page (image 9)
 C. Frontispiece (image 11)
 D. Preface (2 images: 12 and 13)
 E. Imprimatur (image 14)
 F. Other publications (image 15)
 G. Plan of Rome
 1. Plates of the fragments of ancient Rome (4 images: 16–19)
 a) Roma map (image 16)
 2. Index of the fragments of ancient Rome (2 images: 20 and 21)
 3. Index of the remains of ancient Rome (40 images: 22–61)
 4. Plates of the remains of ancient Rome
Mapping the Colosseo and the Panteon through *Le Antichità Romane*

Figure 1: The full Mapping visualization
This outline clearly points to the presence of a hierarchical structure in *Le Antichità Romane*; however, any sort of linear narrative that might be present—beyond the overarching topic/theme itself—is deemphasized in a number of ways, including by the lack of a consistent system of page numbers to facilitate navigation. Instead, the various sections of the content (such as “Plan of Rome” and “Repertoire…”) are connected via an elaborate system of cross-references that increase the complexity of the hierarchical organization of the work. The nature of this complexity is especially evident when following the cross-referential relationships of individual structures/buildings throughout *Le Antichità Romane*, and thus necessitating a visualization like *Mapping*. In particular, *Mapping* visualizes the cross-references of two well-known structures, the Colosseo (Colosseum) and the Panteon (Pantheon). For example, one such sequence of cross-references for the Colosseo begins on the page represented by image 123, located in the “Repertoire…” section. Here, one Colosseo-related remark references another on the same page, but also references image 60 in the “Index of the remains…” section of the “Plan of Rome.” Image 60 then references image 91 in the “Plates of the remains…” and image 16 (the “Roma map”) in the “Plates of the fragments…” section.

PROCESS
The process of developing the design of *Mapping* was informed by a number of fundamental approaches to information visualization and diagramming. One such approach involved the use of nested circles to represent a hierarchical structure. Using this technique, data elements (represented by circles) at the same level of hierarchy are encompassed by a larger circle, which is then laid out alongside other groupings of the same level of hierarchy, and so on. Often, achieving this type of layout efficiently relies on circle-packing algorithms, an example of which can be seen in a bubble chart example generated using the D3/Data-Driven Documents JavaScript library. The bubble chart lacks a nested hierarchy, instead using scale to communicate relative importance. Perhaps most valuable for *Mapping*, the nested circle technique, in contrast to more conventional node-link diagrams or rectangular space-filling treemaps, “makes it easier to see groupings and [the] structural relationships” of data.

Euler diagrams (figure 2), of which familiar Venn diagrams (figure 3) are a special case, also visualize
structural relationships. They are often used to visually demonstrate logical concepts of mathematical set theory and identify the relationships between various sets. This approach uses closed contours to split the plane into zones. These contours can be nested inside of and/or intersect other contours (Venn diagrams must visualize all possible intersections of contours, while Euler diagrams may display only a particular subset as is necessary). This means that Euler diagrams can visualize extremely complex hierarchies. However, as more contours become part of the diagram, it quickly becomes visually overwhelming and its information can prove challenging to comprehend.

It is possible that *Mapping* could have visualized the *Colosseo* and *Panteon* cross-references using an approach that closely resembled an Euler diagram alone; it would be likely, however, that the cross-references would be indicated using awkwardly shaped and placed contours. Instead, *Mapping* also incorporates aspects that resemble characteristics of spider (Figure 4) and constraint (Figure 5) diagrams. Spider diagrams impose a spider (tree) diagram on top of the contours of an Euler diagram, with nodes placed in different zones. Constraint diagrams extend spider diagrams further by adding directional arrows to indicate binary relationships between specific parts of the diagram. While *Mapping* is not intended to be a strict representation of either a spider or constraint diagram, it appropriates key elements of both in order to impose an additional system of organization on top of the hierarchical structure of *Le Antichità Romane*.

The final design of *Mapping* was developed, in part, through the use of *Skydive*, a custom prototype/interface proof-of-concept data visualization tool designed and developed using Processing, a programming language and development environment, based on Java, that promotes software literacy within visual art and design. *Skydive*, while initially developed for another purpose, was useful in automating certain steps of the design process—particularly, the generation of a rough layout from data stored in an XML file. Please refer to the technical brief that accompanies this article for more information on *Skydive*.

Visualization Analysis

As alluded to in the previous section, *Mapping* consists of two integrated systems of visual organization. The first visualizes the structural hierarchy of *Le Antichità Romane* using nested circles. At the highest level of visual hierarchy, twelve circles represent items II.A through II.L from the outline introduced earlier in this article (*Mapping* does not
limitations. The largest gray circle represents item II.G, the Plan of Rome, and encapsulates four other circles for items II.G.1 through II.G.4. The circles for items II.G.1 (plates of the fragments of ancient Rome, including the Roma map) and II.G.4 (plates of the remains of ancient Rome) feature a top-left to bottom-right diagonal background pattern, indicating that they contain plates. The circle for item II.G.3 (index of the remains of ancient Rome) is characterized by a bottom-left to top-right diagonal background pattern, which identifies its content as a set of indices and/or explanations. Item II.G.2 (index of the fragments of ancient Rome) is represented by a circle with a cross-hatched pattern (a combination of the “indices/explanations” and “plates” patterns) due to the fact that the item functions as an index, even though it is actually presented as a sequence of plates (figure 7). Within each of the circles for items II.G.1 through II.G.4, individual images are shown as small white circles. The remaining hierarchical elements of Mapping are visualized using the same formal techniques.

The second system of visual organization present in Mapping traces the cross-references of the Colosseo and the Panteon through Le Antichità Romane, and consists of a series of text labels and directional arrows. Individual images in which there are specific references to either building are identified with a gray outline; Colosseo references are identified with a darker gray than that used for Panteon references. Images with references to both buildings (images 16 and 92) are characterized by a dashed outline (visible in figure 7). Next to each identified image, a textual label provides further details about the nature and/or location of the reference within that particular image. If a reference within one image relates to a reference within another, an arrow links the circles representing those two images together, with the direction of the arrow indicating the direction of the cross-reference. As is sometimes the case—with images 113 and 114, for example—these cross-references may be bi-directional (figure 8). The following two subsections describe both the Colosseo and the Panteon (cross-)references visualized by Mapping.

COLOSSEO

- In image 16, the Colosseo is labeled with the number 310, which references the index listing in image 60.
- In image 60, index listing 310, for the Colosseo, refers to the location of the building in image 16,
as well as to figures 1 and 2 in image 91.

FIGURE 9: Screenshot of Skydive

- In image 91, figures 1 and 2 depict the *Colosseo*.
- In image 92, the *Colosseo* is indicated (as the *Anfiteatro Flavio*).
- In image 113, the *Colosseo* is labeled with the number 35, which references its index listing in image 114.
- In image 114, index listing 35 references the *Colosseo*, which references its location in image 113.
- In image 123, the listing for the *Colosseo* references the listing for the *Anfiteatro Flavio* in the same image, which then references index listing 310 in image 60.

PANTHEON

- In image 16, the *Panteon* is labeled with the numbers 78 and 79, which reference the index listings in image 31.
- In image 31, index listings 78 and 79, for the *Panteon*, refer to the location of the building in image 16, as well as to figure 2 in image 68 and figures 1 and 2 in image 69.
- In image 68, figure 2 depicts the *Panteon*.
- In image 69, figures 1 and 2 depict the *Panteon*.
- In image 92, the *Panteon* is labeled with the number 61 (this does not cross-reference image 101 due to the fact that image 101 is not part of an index listing).
- In image 101, the *Panteon* is mentioned in the fifth paragraph, referring to number 61 in image 92.
- In image 124, the listing for the *Panteon* references index listings 78 and 79 in image 31.
CONCLUSION
In discussing both the process behind designing and the final form of Mapping, this article has described an approach to information visualization that was developed with a very particular purpose (and data set) in mind. More generally, however, “the visualization of hierarchical information structures is an important topic in the visualization community,” and it is becoming increasingly important to be able to easily identify connections within individual and across multiple data sets. For these reasons, the author believes that, through its leveraging of aspects of several existing visualization techniques, the approach described in this article holds great potential for further investigation. Future work may include the development of a formal, more broadly applicable visualization model inspired by Mapping, as well as continued work on an associated software data visualization tool.

TECHNICAL BRIEF
Mapping the Colosseo and the Panteon through Le Antichità Romane, in part, builds upon the core concept of Skydive (Figure 9), a custom data visualization tool designed and developed using Processing (a programming language and development environment, based on Java, that promotes software literacy within visual art and design). As an early prototype/interface proof-of-concept, Skydive uses the Twitter Search API as a data set and visualizes cross-references within it (via hashtags) by using a hierarchical “droplet and cloud” metaphor. In the visualizations that Skydive produces, the smallest circles represent individual tweets, while a system of larger nested circles creates the hierarchy that relates individual tweets to each other. Once a Twitter search has been executed, a user can further manipulate the data returned by removing, adding, or changing the specific tweets that are returned. After committing to these manipulations, the visualization then updates accordingly.

Skydive itself did not produce Mapping in its entirety, but it was useful in automating certain steps of the Mapping design process—particularly, the generation of an initial rough layout. Accompanying this article is an xml file (see appendix) that represents the data visualized by Mapping. Skydive was used to generate a number of hierarchical visualization layouts from this data, which were then evaluated based on aesthetic characteristics. Once a suitable hierarchical layout was chosen, the system of cross-references of the Colosseo and the Panteon was added to the visualization manually (even though this data is present in the xml file). This was due, in part, to the fact that it was especially challenging to ensure that the individual elements of the visualization were positioned in a way they did not obscure other critical elements. Further work on Skydive may investigate how to effectively visualize all elements of a similar xml structure, resulting in a comprehensive tool for designing other visualizations like Mapping.
APPENDIX
DATA USED FOR MAPPING

```xml
<?xml version="1.0" encoding="UTF-8"?>
<nodes>
  <group name="Non-content">
    <term id="1" />
    <term id="2" />
    <term id="3" />
    <term id="4" />
    <term id="5" />
    <term id="6" />
    <term id="8" />
    <term id="10" />
    <term id="104" />
    <term id="110" />
    <term id="122" />
    <term id="125" />
    <term id="126" />
    <term id="127" />
    <term id="128" />
    <term id="129" />
    <term id="130" />
  </group>
  <group name="Content">
    <term id="7" name="Portrait of Piranesi by Polanzani" />
    <term id="9" name="Title page" />
    <term id="11" name="Frontispiece" class="plate" />
    <group name="Preface">
      <term id="12" />
      <term id="13" />
    </group>
    <term id="14" name="Imprimatur" />
    <term id="15" name="Other publications" />
    <group name="Plan of Rome">
      <group name="Plates of the fragments of ancient Rome" class="plate">
        <term id="16" name="Roma map" label="Colosseo, &amp;#35;97; Panteon, &amp;#35;78 &amp; 79">
          <reference to="31" type="panteon" />
          <reference to="60" type="colosseo" />
        </term>
      </group>
    </group>
    <group name="Index of the fragments of ancient Rome" class="plate">
      <term id="20" />
      <term id="21" />
    </group>
    <group name="Index of the remains of ancient Rome" class="index">
      <term id="22" />
      <term id="23" />
      <term id="24" />
      <term id="25" />
      <term id="26" />
  </group>
</nodes>
```
NOTES

2 Ibid., 221.

4 Heather Hyde Minor, Associate Professor of Art History at the University of Notre Dame, has recently authored and published (through The Pennsylvania State University Press) a book on Piranesi and his work, Piranesi’s Lost Words. Mapping was prompted and inspired by an engaging conversation with her as she was preparing her manuscript. More information is available at http://www.psupress.org/books/titles/978-0-271-06549-6.html.

6 Wang et al., “Visualization of large hierarchical data,” 517.

8 Gil, Howse, and Kent, “Toward a formalization,” 73.

9 Ibid., 74.

10 See note 6.

BIography

Brad Tober investigates the potential of code-based and interactive visual communication technologies, aiming to contextualize their relationships to design practice and pedagogy. His practice-led research is often speculative, recognizing that forms of and methodologies for contemporary practice spanning design and technology are best developed through exploratory processes.
BIBLIOGRAPHY

